Reteach

Spheres

Volume and Surface Area of a Sphere

<table>
<thead>
<tr>
<th>Volume</th>
<th>The volume of a sphere with radius r is $V = \frac{4}{3} \pi r^3$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area</td>
<td>The surface area of a sphere with radius r is $S = 4\pi r^2$.</td>
</tr>
</tbody>
</table>

Find each measurement. Give your answer in terms of π.

1. the volume of the sphere

![5 mm sphere](image1)

2. the volume of the sphere

![16 cm sphere](image2)

3. the volume of the hemisphere

![2 ft hemisphere](image3)

4. the radius of a sphere with volume $7776\pi \text{ in}^3$

5. the surface area of the sphere

![7 in sphere](image4)

6. the surface area of the sphere

![20 in sphere](image5)
Reteach

Spheres continued

The radius of the sphere is multiplied by $\frac{1}{4}$.

Describe the effect on the surface area.

original surface area: new surface area, radius multiplied by $\frac{1}{4}$:

$S = 4\pi r^2$

$= 4\pi(16)^2 \quad r = 16$

$= 1024\pi \text{ m}^2 \quad \text{Simplify}$

$S = 4\pi(4)^2 \quad r = 4$

$= 64\pi \text{ m}^2 \quad \text{Simplify}$

Notice that $1024 \cdot \frac{1}{16} = 64$. If the dimensions are multiplied by $\frac{1}{4}$,

the surface area is multiplied by $\left(\frac{1}{4}\right)^2$, or $\frac{1}{16}$.

Describe the effect of each change on the given measurement of the figure.

7. surface area

The radius is multiplied by 4.

8. volume

The dimensions are multiplied by $\frac{1}{2}$.

Find the surface area and volume of each composite figure.

Round to the nearest tenth.

9. Hint: To find the surface area, add the lateral area of the cylinder, the area of one base, and the surface area of the hemisphere.

10. Hint: To find the volume, subtract the volume of the hemisphere from the volume of the cylinder.
12. Consider the octahedron as two square pyramids with different altitudes, \(h_1 \) and \(h_2 \). \(V = \frac{1}{3} B(h_1 + h_2) \) Note that altitude is always a positive number.

13. \(V \approx 433.3 \) units³

Problem Solving

1. \(V \approx 940.0 \) m³
2. \(V = 50.75\pi \) cm³
3. \(V \approx 210.8 \) cm³
4. \(V = 98\pi \) in³
5. A
6. G
7. A

Reading Strategies

1. \(V \approx 3141.6 \) cm³
2. \(V = 28 \) ft³
3. \(V \approx 277.3 \) in³
4. \(V \approx 3534.3 \) ft³

11-4 SPHERES

Practice A

1. \(V = \frac{4}{3} \pi r^3 \)
2. \(S = 4\pi r^2 \)
3. \(V = 288\pi \) cm³
4. \(V = 486\pi \) in³
5. \(r = 30 \) mm
6. the sphere
7. \(S = 256\pi \) ft²
8. \(S = 64\pi \) yd²
9. \(V = 36\pi \) m³; \(S = 36\pi \) m²
10. \(V = 972\pi \) m³; \(S = 324\pi \) m²
11. The volume is multiplied by 27. The surface area is multiplied by 9.
12. \(V = 81\pi \) m³; \(S = 69\pi \) m²

Practice B

1. \(V = 3888\pi \) mm³
2. \(V = \frac{8788\pi}{3} \) ft³ = \(2929\frac{1}{3} \) ft³
3. \(d = 10 \) m
4. \(V = \frac{250\pi}{3} \) cm³; \(V = \frac{32\pi}{9} \) cm³
5. \(S = 484\pi \) in²
6. \(S = 48\pi \) yd²; \(S = 16\pi \) yd²
7. \(V = \frac{1372\pi}{3} \) km³ = \(457\frac{1}{3} \) π km³
8. The surface area is divided by 16.

9. The volume is multiplied by \(\frac{8}{125} \).

10. \(S \approx 271.6 \) in²; \(V \approx 234.8 \) in³
11. \(S \approx 446.0 \) cm²; \(V \approx 829.4 \) cm³

Practice C

1. Possible answer:

```
\[ r \]
```

2. Possible answer: \(S = 4\pi r^2 + r^2 + r^2\sqrt{4\pi^2 + 1} \)

3. \(S = 3\pi r^2 + \pi r \)
4. \(h \approx 11.1 \) in.
5. \(h \approx 6.9 \) in.
6. \(h = 6 \) in.
7. \(S = 4\pi(x^2 + y^2 + z^2); V = \frac{4}{3} \pi(x^2 + y^2 + z^2)^3 \)

8. \(V = \frac{375\pi}{32} \) in³
9. \(V = \frac{125\pi}{32} \) in³

10. \(66\frac{2}{3} \)

Reteach

1. \(V = \frac{500\pi}{3} \) mm³
2. \(V = \frac{2048\pi}{3} \) cm³
3. \(V = \frac{16\pi}{3} \) ft³
4. \(r = 18 \) in.

5. \(S = 196\pi \) in²
6. \(S = 400\pi \) m²
7. The surface area is multiplied by 16.

8. The volume is multiplied by \(\frac{1}{8} \).

9. \(S \approx 1442.0 \) cm²; \(V \approx 4580.4 \) cm³
10. \(S \approx 216.8 \) in²; \(V \approx 141.4 \) in³

Challenge

1. \(16\pi \) in²; \(24\pi \) in²; \(16\pi \) in³; \(16\pi \) in²; \(\frac{32}{3} \pi \) in³

2. \(100\pi \) cm²; \(150\pi \) cm²; \(250\pi \) cm³; \(100\pi \) cm²; \(\frac{500}{3} \pi \) cm³

3. \(400\pi \) ft²; \(600\pi \) ft²; \(2000\pi \) ft³; \(400\pi \) ft²; \(\frac{4000}{3} \pi \) ft³