REASONING WITH EQUATIONS AND INEQUALITIES (A.REI)
solving equations and inequalities in one variable
MCC9-12.A.REI.4 Solve quadratic equations in one variable.
MCC9-12.A.REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
MCC9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
MCC9-12.A.REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
MCC9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
mcc9.12.a.rei.4 |
MCC9.12.A.REI.4a |
MCC9.12.A.REI.4B |
solve systems of equations
MCC9-12.A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x2 + y2 = 3.
- Include systems that lead to work with fractions